
Detection of Intrusion using Alert Aggregation in
DataStream Modelling with Constructive Basis

J Swathi#1, Prof.P.Pradeep*2, P Mahesh Kumar

#3

#1

Karimnagar, A.P, INDIA
MTech (CS), Vivekananda Institute of Technology and Science,

*2

Karimnagar, A.P, INDIA
Head of the Department CSE, Vivekananda Institute of Technology and Science,

#3

Hyderabad, A.P, INDIA
MTech (CSE), Bandari Srinivas Institute of Technology and Science,

Abstract— Alert aggregation is an important subtask of

intrusion detection. The goal is to identify and to cluster
different alerts—produced by low-level intrusion detection
systems, firewalls, etc.—belonging to a specific attack instance
which has been initiated by an attacker at a certain point in
time. Thus, meta-alerts can be generated for the clusters that
contain all the relevant information whereas the amount of
data (i.e., alerts) can be reduced substantially. Meta-alerts may
then be the basis for reporting to security experts or for
communication within a distributed intrusion detection
system. We propose a novel technique for online alert
aggregation which is based on a dynamic, probabilistic model
of the current attack situation. Basically, it can be regarded as
a data stream version of a maximum likelihood approach for
the estimation of the model parameters. With three
benchmark data sets, we demonstrate that it is possible to
achieve reduction rates of up to 99.96 percent while the
number of missing meta-alerts is extremely low. In addition,
meta-alerts are generated with a delay of typically only a few
seconds after observing the first alert belonging to a new attack
instance.

Keywords— Intrusion detection, alert aggregation,
generative modelling, data stream algorithm.

I. INTRODUCTION
Intrusion detection systems (IDS) are besides other

protective measures such as virtual private networks,
authentication mechanisms, or encryption techniques
very important to guarantee information security.
They help to defend against the various threats to
which networks and hosts are exposed to by detecting
the actions of attackers or attack tools in a network or
host-based manner with misuse or anomaly detection
techniques.
At present, most IDS are quite reliable in detecting
suspicious actions by evaluating TCP/IP connections
or log files, for instance. Once an IDS finds a
suspicious action, it immediately creates an alert which
contains information about the source, target, and
estimated type of the attack (e.g., SQL injection, buffer
overflow, or denial of service). As the intrusive actions
caused by a single attack instance— which is the
occurrence of an attack of a particular type that has
been launched by a specific attacker at a certain point in
time are often spread over many network connections
or log file entries, a single attack instance often results in
hundreds or even thousands of alerts. IDS usually
focus on detecting attack types, but not on
distinguishing between different attack instances. In

addition, even low rates of false alerts could easily result
in a high total number of false alerts if thousands of
network packets or log file entries are inspected. As a
consequence, the IDS creates many alerts at a low level
of abstraction. It is extremely difficult for a human
security expert to inspect this flood of alerts, and
decisions that follow from single alerts might be wrong
with a relatively high probability.

In our opinion, a “perfect” IDS should be situation-
aware in the sense that at any point in time it should
“know” what is going on in its environment regarding
attack instances (of various types) and attackers. In this
paper, we make an important step toward this goal by
introducing and evaluating a new technique for alert
aggregation. Alerts may originate from low-level IDS
such as those mentioned above, from firewalls (FW),
etc. Alerts that belong to one attack instance must be
clustered together and meta-alerts must be generated
for these clusters. The main goal is to reduce the amount
of alerts substantially without losing any important
information which is necessary to identify on- going
attack instances. We want to have no missing meta-
alerts, but in turn we accept false or redundant meta-
alerts to a certain degree.

This problem is not new, but current solutions are
typically based on a quite simple sorting of alerts, e.g.,
according to their source, destination, and attack type.
Under real conditions such as the presence of
classification errors of the low-level IDS (e.g., false
alerts), uncertainty with respect to the source of the attack
due to spoofed IP addresses, or wrongly adjusted time
windows, for instance, such an approach fails quite
often.
Our approach has the following distinct properties:

. It is a generative modeling approach using prob-
abilistic methods. Assuming that attack
instances can be regarded as random
processes “producing” alerts, we aim at
modeling these processes using
approximative maximum likelihood
parameter estimation techniques. Thus, the
beginning as well as the completion of attack
instances can be detected.

. It is a data stream approach, i.e., each observed
alert is processed only a few times. Thus, it can
be applied online and under harsh timing
constraints.

J Swathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4723 - 4730

4723

The remainder of this paper is organized as follows:
In Section 2 some related work is presented. Section 3
describes the proposed alert aggregation approach,
and Section 4 provides experimental results for the alert
aggregation using various data sets. Finally, Section 5
summarizes the major findings.

II. RELATED WORK
Most existing IDS are optimized to detect attacks with

high accuracy. However, they still have various
disadvantages that have been outlined in a number of
publications and a lot of work has been done to analyze
IDS in order to direct future research. Besides others,
one drawback is the large amount of alerts produced.
Recent research focuses on the correlation of alerts
from (possibly multiple) IDS. If not stated otherwise,
all approaches outlined in the following present
either online algorithms or as we see it can easily be
extended to an online version.

Probably, the most comprehensive approach to alert
correlation is introduced. One step in the presented
correlation approach is attack thread reconstruction, which
can be seen as a kind of attack instance recognition. No
clustering algorithm is used, but a strict sorting of
alerts within a temporal window of fixed length
according to the source, destination, and attack
classification (attack type). A similar approach is used
to eliminate duplicates, i.e., alerts that share the same
quadruple of source and destination address as well
as source and destination port. In addition, alerts are
aggregated (online) into predefined clusters (so-called
situations) in order to provide a more condensed view
of the current attack situation. The definition of such
situations is also used to cluster alerts. Alert clustering is
used to group alerts that belong to the same attack
occurrence. Even though called clustering, there is no
clustering algorithm in a classic sense. The alerts from
one (or possibly several) IDS are stored in a relational
database and a similarity relation which is based on
expert rules is used to group similar alerts together. Two
alerts are defined to be similar, for instance, if both
occur within a fixed time window and their source and
target match exactly. As already mentioned, these
approaches are likely to fail under real-life conditions
with imperfect classifiers (i.e., low-level IDS) with false
alerts or wrongly adjusted time windows.

A weighted, attribute-wise similarity operator is
used to decide whether to fuse two alerts or not.
However, as already stated, this approach suffers from
the high number of parameters that need to be set. The
similarity operator presented has the same
disadvantage there are lots of parameters that must be
set by the user and there is no or only little guidance in
order to find good values. Another clustering algorithm
that is based on attribute-wise similarity measures with
user- defined parameters is presented. However, a
closer look at the parameter setting reveals that the
similarity measure, in fact, degenerates to a strict
sorting according to the source and destination IP
addresses and ports of the alerts. The drawbacks that
arise thereof are the same as those mentioned above.

Three different approaches are presented to fuse
alerts. The first, quite simple one groups alerts according
to their source IP address only. The other two
approaches are based on different supervised learning
techniques. Besides a basic least-squares error
approach, multilayer perceptions, radial basis function
networks, and decision trees are used to decide whether
to fuse a new alert with an already existing meta-alert
(called scenario) or not. Due to the supervised nature,
labeled training data need to be generated which could
be quite difficult in case of various attack instances.

The same or quite similar techniques as described so
far are also applied in many other approaches to alert
correlation, especially in the field of intrusion scenario
detection. Prominent research in scenario detection is
described, for example. More details can be found.

An offline clustering solution based on the CURE
algorithm is presented. The solution is restricted to
numerical attributes. In addition, the number of
clusters must be set manually. This is problematic, as
in fact it assumes that the security expert has
knowledge about the actual number of ongoing attack
instances. The alert clustering solution described is more
related to ours. A link-based clustering approach is
used to repeatedly fuse alerts into more generalized
ones. The intention is to discover the reasons for the
existence of the majority of alerts, the so- called root
causes, and to eliminate them subsequently. An attack
instance in our sense can also be seen as a kind of root
cause, but root causes are regarded as “generally
persistent” which does not hold for attack instances that
occur only within a limited time window. Furthermore,
only root causes that are responsible for a majority of
alerts are of interest and the attribute-oriented
induction algorithm is forced “to find large clusters” as
the alert load can thus be reduced at most. Attack
instances that result in a small number of alerts (such as
PHF or FFB) are likely to be ignored completely. The
main difference to our approach is that the algorithm
can only be used in an offline setting and is intended to
analyze historical alert logs. In contrast, we use an
online approach to model the current attack situation.
The alert clustering approach described but aims at
reducing the false positive rate. The created cluster
structure is used as a filter to reduce the amount of
created alerts. Those alerts that are similar to already
known false positives are kept back, whereas alerts that
are considered to be legitimate (i.e., dissimilar to all
known false positives) are reported and not further
aggregated. The same idea but based on a different
offline clustering algorithm is presented.

A completely different clustering approach is
presented. There, the reconstruction error of an auto
associator neural network (AA-NN) is used to
distinguish different types of alerts. Alerts that yield the
same (or a similar) reconstruction error are put into the
same cluster. The approach can be applied online, but an
offline training phase and training data are needed to train
the AA-NN and also to manually adjust intervals for the
reconstruction error that determine which alerts are
clustered together. In addition, it turned out that due to the
dimensionality reduction by the AA-NN, alerts of

J Swathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4723 - 4730

4724

different types can have the same reconstruction error
which leads to erroneous clustering.

Fig. 1. Architecture of an intrusion detection agent.

In our prior work, we applied the well-known c-means
clustering algorithm in order to identify attack instances.
However, this algorithm also works in a purely offline
manner.

III. A NOVEL ONLINE ALERT AGGREGATION TECHNIQUE
In this section, we describe our new alert aggregation

approach which is at each point in time based on a
probabilistic model of the current situation. To outline
the preconditions and objectives of alert aggregation,
we start with a short sketch of our intrusion framework.
Then, we briefly describe the generation of alerts and
the alert format. We continue with a new clustering
algorithm for offline alert aggregation which is basically
a parameter estimation technique for the probabilistic
model. After that, we extend this offline method to an
algorithm for data stream clustering which can be
applied to online alert aggregation. Finally, we make
some remarks on the generation of meta-alerts.

A. Collaborating Intrusion Detection Agents

In our work, we focus on a system of structurally very
similar so-called intrusion detection (ID) agents.
Through self-organized collaboration, these ID agents
form a distributed intrusion detection system (DIDS).

Fig. 1 outlines the layered architecture of an ID
agent:The sensor layer provides the interface to the
network and the host on which the agent resides. Sensors
acquire raw data from both the network and the host,
filter incoming data, and extract interesting and
potentially valuable (e.g., statistical) information
which is needed to construct an appropriate event. At
the detection layer, different detectors, e.g., classifiers
trained with machine learning techniques such as
support vector machines (SVM) or conventional rule-
based systems such as Snort [24], assess these events
and search for known attack signatures (misuse
detection) and suspicious behavior (anomaly
detection). In case of attack suspicion, they create alerts
which are then forwarded to the alert processing layer.
Alerts may also be produced by FW or the like. At the

alert processing layer, the alert aggregation module has
to combine alerts that are assumed to belong to a
specific attack instance. Thus, so- called meta-alerts are
generated. Meta-alerts are used or enhanced in
various ways, e.g., scenario detection or decentralized
alert correlation. An important task of the reaction layer
is reporting.

The overall architecture of the distributed intrusion
detection system and a framework for large-scale
simulations are described in more detail. In our layered
ID agent architecture, each layer assesses, filters,
and/or aggregates information produced by a lower
layer. Thus, relevant information gets more and more
condensed and certain, and, therefore, also more
valuable. We aim at realizing each layer in a way such
that the recall of the applied techniques is very high,
possibly at the cost of a slightly poorer precision. In
other words, with the alert aggregation module on
which we focus in this paper we want to have a
minimal number of missing meta-alerts (false
negatives) and we accept some false meta- alerts (false
positives) and redundant meta-alerts in turn.

B. Alert Generation and Format

In this section, we make some comments on the
information contained in alerts, the objects that must
be aggregated, and on their format. As the concrete
content and format depend on a specific task and on
certain realizations of the sensors and detectors, some
more details will be given in Section 4 together with the
experimental conditions.

At the sensor layer, sensors determine the values of
attributes that are used as input for the detectors as
well as for the alert clustering module. Attributes in an
event that are independent of a particular attack instance
can be used for classification at the detection layer.
Attributes that are (or might be) dependent on the attack
instance can be used in an alert aggregation process to
distinguish different attack instances. A perfect
partition into dependent and independent attributes,
however, cannot be made. Some are clearly dependent
(such as the source IP address which can identify the
attacker), some are clearly independent such as the
destination port which usually is 80 in case of web-
based attacks), and lots are both (such as the destination
port which can be a hint to the attacker’s actual target
service as well as an attack tool specifically designed to
target a particular service only). In addition to the
attributes produced by the sensors, alert aggregation
is based on additional attributes generated by the
detectors. Examples are the estimated type of the
attack instance that led to the generation of the alert
(e.g., SQL injection, buffer overflow, or denial of
service), and the degree of uncertainty associated with
that estimate.

C. Data Stream Alert Aggregation

In this section, we describe how the offline approach is
extended to an online approach working for dynamic
attack situations.

Clearly, there is a trade-off between runtime (or

J Swathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4723 - 4730

4725

reaction time) and accuracy. For example, it is hardly
possible to decide upon the existence of a new attack
instance when only one observation is made. From the
viewpoint of our objectives, the tasks 1 and 2 are more
time critical than task 3.

From a probabilistic viewpoint we can state that our
overall random process is non stationary in a certain
sense which can be regarded as being equivalent to
changing the mixing coefficients at certain points in
time. A mixing coefficient is either zero or the reciprocal
of the number of “active” components (for the time
interval of the respective attack instance). With
appropriate novelty and obsoleteness detection
mechanisms, we aim at detecting these points in time
with both sufficient certainty and timeliness.

Algorithm 2 describes the online alert aggregation. If
a new alert is observed we first have to decide whether
a first component has to be created. In this case, we
initialize its parameters with information taken from
this alert. Random, small values are added, for
example, to prevent any subsequent optimization
steps from running into singularities of the respective
likelihood function. Otherwise, we have to decide
whether the alert has to be associated with an existing
component or not, i.e., whether we believe that it
belongs to an ongoing attack instance or not.
Provisionally, we assign the alert to the most likely
component (E step) and optimize the parameters of
this component (M step). For the reason of temporal
efficiency, we do not conduct a sequence of E and M
steps for the overall model. In some tests, it turned out
that our main goal not to miss any attack instances, can
be achieved this way with substantially lower runtimes
but at the cost of some redundant meta-alerts (due to
split of clusters). The assignment of the alert to an
existing component is not accepted in any case, only if
the quality of the model increases or does not decrease
too much, e.g., not more than 15 percent (realized by
means of threshold &).

Algorithm 3 describes the novelty handling itself.
Basically, to adapt the overall model, we run the offline
aggregation algorithm several times with different
possible component numbers to chose the optimal
number. How- ever, due to the homogeneity of the
buffer, we may restrict the optimization to the alerts in
the buffer and in one “neighbor” cluster on the one hand
and a relatively small user-defined maximum number
of components K on the other without violating our
main goal. The result of this local optimization is finally
fused with the unmodified parts of the model.

In order to reduce the runtime of this algorithm further,
we may reduce the number of alerts that have to be
processed by means of an appropriate sub sampling
technique.

J Swathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4723 - 4730

4726

A. Meta-Alert Generation and Format
With the creation of a new component, an

appropriate meta- alert that represents the information
about the component in an abstract way is created.
Every time a new alert is added to a component, the
corresponding meta-alert is updated incrementally,
too. That is, the meta-alert “evolves” with the
component. Meta-alerts may be the basis for a whole set
further tasks:

. Sequences of meta-alerts may be investigated

further in order to detect more complex attack
scenarios (e.g., by means of hidden Markov
models).

. Meta-alerts may be exchanged with other ID
agents in order to detect distributed attacks such
as one-to- many attacks.

. Based on the information stored in the meta-
alerts, reports may be generated to inform a
human security expert about the ongoing attack
situation.

Meta-alerts could be used at various points in time

from the initial creation until the deletion of the
corresponding component (or even later). For instance,
reports could be created immediately after the creation
of the component or—which could be more preferable
in some cases—a sequence of updated reports could
be created in regular time intervals. Another example
is the exchange of meta- alerts between ID agents: Due
to high communication costs, meta-alerts could be
exchanged based on the evaluation of their
interestingness.

According to the task for which meta-alerts are used,
they may contain different attributes. Examples for
those attributes are aggregated alert attributes (e.g., lists
or intervals of source addresses or targeted service
ports, or a time interval that marks the beginning and the
end if available of the attack instance), attributes
extracted from the probabilistic model (e.g., the
distribution parameters or the number of alerts
assigned to the component), an aggregated alert
assessment provided by the detection layer (e.g., the
attack type classification or the classification
confidence), and also information about the current
attack situation (e.g., the number of recent attacks of the
same or a similar type, links to attacks originating from
the same or a similar source).

IV. EXPERIMENTAL RESULTS
This section evaluates the new alert aggregation

approach. We use three different data sets to
demonstrate the feasibility of the proposed method:
The first is the well- known DARPA intrusion
detection evaluation data set, for the second we used real-
life network traffic data collected at our university
campus network, and the third contains firewall log
messages from a commercial
Internet service provider. All experiments were
conducted on an PC with 2.20 GHz and 2 GB of RAM.

Fig. 2. ROC curve for the SVM detector.

A. Campus Network Data

To assess the performance of our approach in more
detail, we also conducted own attack experiments. We
launched several brute force password guessing attacks
against the mail server (POP3) of our campus network
and recorded the network traffic. The attack instances
differed in origin, start time, duration, and password
guessing rate. The attack schedule was designed to
reflect situations which we regard as being difficult to
recognize. In particular, we have

1. several concurrent attack instances (up to

seven),
2. partially and completely overlapping attack

in- stances,
3. several instances within a short time interval,
4. different attack instances from similar sources,
5. different attack durations, and
6. an attacker that changes his IP address

during the attack.

In order to demonstrate that the proposed technique
can also be used with a conventional signature-based
detector, the captured traffic was analyzed by the open
source IDS Snort, which detected all 17 attack instances
that have been launched and produced 128,816 alerts.
The alert format equals the one used for the SVM
detector, i.e., the alerts exhibit the source and destination
IP address, the source and destination port, the attack
type, and creation time differences. Snort was
configured to match our network topology and we
turned off rudimental alert aggregation features. In
order to achieve a high recall, we activated all available
rule sets the official rule sets as well as available
community rules, which both are available at the Snort
web page. Activating all rules leads to a false alert rate
of 0.33 percent. The FPR is based on the assumption
that all alerts that are not classified with the attack type
that we launched are false alerts. There is no missing
alert rate given in Table 1 for this data set for two
reasons: First, it cannot be guaranteed that there are
unknown attacks in the data set that were started by
real attackers and second, we do not know exactly how
many alerts should be created by the attacks we
launched.

J Swathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4723 - 4730

4727

B. Performance Measures
In order to assess the performance of the alert

aggregation, we evaluate the following measures:
Percentage of detected instances (p). We regard an

attack instance as being detected if there is at least one
meta- alert that predominantly contains alerts of that
particular instance. The percentage of detected attack
instances p can thus be determined by dividing the
number of instances that are detected by the total
number of instances in the data set. The measure is
computed with respect to the instances covered by the
output of the detection layer, i.e., instances missed by
the detectors are not considered.

Number of meta-alerts (MA) and reduction rate
(r). The number of meta-alerts (MA) is further
divided into the number of attack meta-alerts
MAattack which predominantly contain true alerts and
the number of nonattack meta-alerts MAnonattack
which predominantly contain false alerts. The
reduction rate r is 1 minus the number of created
meta alerts MA divided by the total number of alerts
N.

Average runtime (tavg) and worst case runtime
(tworst). The average runtime is measured in
milliseconds per alert. Assuming up to several hundred
thousand alerts a day, tavg should stay clearly below
100 ms per alert. The worst case runtime tworse, which
is measured in seconds, states how long it takes at most
to execute the while loop of Algorithm 2, which may
include the execution of Algorithms 3 and 1. Meta-alert
creation delay (d). It is obvious that there is a certain
delay until a meta-alert is created for a new attack
instance. The meta-alert creation delay d measures the
delay between the actual beginning of the instance (i.e.,
the creation time of the first alert) and the creation of
the first meta-alert for that instance. We investigate,
how many seconds the algorithm needs to create 90
percent (d90%), 95 percent (d95%), and 100 percent
(d100%) of the meta-alerts.
C. Results

In the following, the results for the alert aggregation
are presented. For all experiments, the same parameter
settings are used. We set the threshold & that decides
whether to add a new alert to an existing component or
not to five percent, and the value for the threshold μ
that specifies the allowed temporal spread of the alert
buffer to 180 seconds. & was set that low value in order
to ensure that even a quite small degrade of the cluster
quality, which could indicate a new attack instance,
results in a new component. A small value of &, of
course, results in more components and, thus, in a lower
reduction rate, but it also reduces the risk of missing
attack instances. The parameter μ, which is used in the
novelty assessment function, controls the maximum
time that new alerts are allowed to reside in the buffer
B. In order to keep the response time short, we set it to
180 s which we think is a reasonable value. For both
parameters, there were large intervals in which
parameter values could be chosen without
deteriorating the results. A detailed analysis and

discussion on the effects of different parameter
settings can be found.

Fig. 3. Cumulative creation delays for meta-alerts.

With more meta-alerts, the runtime increases. Even in

OP 4, with an average runtime of 0.97 ms per alert, the
proposed technique is still very efficient. Fig. 3 shows
the component creation delays for the four operating
points. The figure depicts the percentage of attack
instances for which a meta-alert was created after a
time not exceeding the value specified at the x-axis. It
can be seen that the creation delay is within the range of
a few seconds and, thus, meets the requirements for an
online application. Table 2 displays the time after which
for 90, 95, and 100 percent of the attack instances meta-
alerts were created. Note that these values correspond to
points on the curve in Fig. 5. Interestingly, in the
idealized case, the delay is much higher which can be
explained by the novelty detection mechanism (cf.
(14)). In the case of a more homogeneous alert stream,
the novelty handling is mainly influenced by the
temporal spread whereas in the case of a
heterogeneous alert stream due to false alerts, the
novelty handling is started more often which results in
lower component creation delay times.
D. Conclusion

The experiments demonstrated the broad applicability
of the proposed online alert aggregation approach. We
analyzed three different data sets and showed that
machine-learning-based detectors, conventional
signature- based detectors, and even firewalls can be used
as alert generators. In all cases, the amount of data could be
reduced substantially. Although there are situations
especially clusters that are wrongly split the instance
detection rate is very high: None or only very few attack
instances were missed. Runtime and component creation
delay are well suited for an online application.

V. SUMMARY AND OUTLOOK
We presented a novel technique for online alert

aggregation and generation of meta-alerts. We have
shown that the sheer amount of data that must be
reported to a human security expert or communicated
within a distributed intrusion detection system, for
instance, can be reduced significantly. The reduction
rate with respect to the number of alerts was up to 99.96
percent in our experiments. At the same time, the
number of missing attack instances is extremely low or

J Swathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4723 - 4730

4728

even zero in some of our experiments and the delay for the
detection of attack instances is within the range of some
seconds only.

In the future, we will develop techniques for
interestingness based communication strategies for a
distributed IDS. This IDS will be based on organic
computing principles [44]. In addition, we will
investigate how human domain knowledge can be
used to improve the detection processes further. We
will also apply our techniques to benchmark data that
fuse information from heterogeneous sources (e.g.,
combining host and network-based detection).

ACKNOWLEDGMENTS

This work was partly supported by the German
Research Foundation (DFG) under grant number SI
674/3-2. The authors would like to thank D. Fisch for
his support in preparing one of the data sets. The
authors highly appreciate the suggestions of the
anonymous reviewers that helped them to improve the
quality of the article.

REFERENCES

[1] S. Axelsson, “Intrusion Detection Systems: A Survey and
Taxonomy,” Technical Report 99-15, Dept. of Computer Eng.,
Chalmers Univ. of Technology, 2000.

[2] M.R. Endsley, “Theoretical Underpinnings of Situation Aware-
ness: A Critical Review,” Situation Awareness Analysis and
Measurement, M.R. Endsley and D.J. Garland, eds., chapter 1, pp.
3-32, Lawrence Erlbaum Assoc., 2000.

[3] C.M. Bishop, Pattern Recognition and Machine Learning.
Springer,2006.

[4] M.R. Henzinger, P. Raghavan, and S. Rajagopalan, Computing
on Data Streams. Am. Math. Soc., 1999.

[5] A. Allen, “Intrusion Detection Systems: Perspective,” Technical
Report DPRO-95367, Gartner, Inc., 2003.

[6] F. Valeur, G. Vigna, C. Krü gel, and R.A. Kemmerer, “A
Comprehensive Approach to Intrusion Detection Alert
Correla-tion,” IEEE Trans. Dependable and Secure Computing, vol. 1,
no. 3, pp. 146-169, July-Sept. 2004.

[7] H. Debar and A. Wespi, “Aggregation and Correlation of
Intrusion-Detection Alerts,” Recent Advances in Intrusion
Detection,W. Lee, L. Me, and A. Wespi, eds., pp. 85-103,
Springer, 2001.

[8] D. Li, Z. Li, and J. Ma, “Processing Intrusion Detection Alerts
in Large-Scale Network,” Proc. Int’l Symp. Electronic Commerce
and Security, pp. 545-548, 2008.

[9] F. Cuppens, “Managing Alerts in a Multi-Intrusion Detection
Environment,” Proc. 17th Ann. Computer Security Applications Conf.
(ACSAC ’01), pp. 22-31, 2001.

[10] A. Valdes and K. Skinner, “Probabilistic Alert Correlation,”
Recent Advances in Intrusion Detection, W. Lee, L. Me, and A.
Wespi, eds. pp. 54-68, Springer, 2001.

[11] K. Julisch, “Using Root Cause Analysis to Handle Intrusion
Detection Alarms,” PhD dissertation, Universität Dortmund,
2003.

[12] T. Pietraszek, “Alert Classification to Reduce False Positives in
Intrusion Detection,” PhD dissertation, Universität Freiburg,
2006.

[13] F. Autrel and F. Cuppens, “Using an Intrusion Detection Alert
Similarity Operator to Aggregate and Fuse Alerts,” Proc. Fourth
Conf. Security and Network Architectures, pp. 312-322, 2005.

[14] G. Giacinto, R. Perdisci, and F. Roli, “Alarm Clustering for
Intrusion Detection Systems in Computer Networks,” Machine
Learning and Data Mining in Pattern Recognition, P. Perner and A.
Imiya, eds. pp. 184-193, Springer, 2005.

[15] O. Dain and R. Cunningham, “Fusing a Heterogeneous Alert
Stream into Scenarios,” Proc. 2001 ACM Workshop Data Mining for
Security Applications, pp. 1-13, 2001.

[16] P. Ning, Y. Cui, D.S. Reeves, and D. Xu, “Techniques and Tools
for Analyzing Intrusion Alerts,” ACM Trans. Information Systems
Security, vol. 7, no. 2, pp. 274-318, 2004.

[17] F. Cuppens and R. Ortalo, “LAMBDA: A Language to Model a
Database for Detection of Attacks,” Recent Advances in Intrusion
Detection, H. Debar, L. Me, and S.F. Wu, eds. pp. 197-216,
Springer, 2000.

[18] S.T. Eckmann, G. Vigna, and R.A. Kemmerer, “STATL: An
Attack Language for State-Based Intrusion Detection,” J.
Computer Security, vol. 10, nos. 1/2, pp. 71-103, 2002.

[19] A. Hofmann, “Alarmaggregation und
Interessantheitsbewertung in einem dezentralisierten
Angriffserkennungsystem,” PhD dis- sertation, Universität
Passau, under review.

[20] M.S. Shin, H. Moon, K.H. Ryu, K. Kim, and J. Kim, “Applying
Data Mining Techniques to Analyze Alert Data,” Web Technologies
and Applications, X. Zhou, Y. Zhang, and M.E. Orlowska, eds.
pp. 193-200, Springer, 2003.

[21] J. Song, H. Ohba, H. Takakura, Y. Okabe, K. Ohira, and Y. Kwon,
“A Comprehensive Approach to Detect Unknown Attacks via
Intrusion Detection Alerts,” Advances in Computer Science—ASIAN
2007, Computer and Network Security, I. Cervesato, ed., pp. 247-253,
Springer, 2008.

[22] R. Smith, N. Japkowicz, M. Dondo, and P. Mason, “Using
Unsupervised Learning for Network Alert Correlation,”
Advances in Artificial Intelligence, R. Goebel, J. Siekmann, and W.
Wahlster, eds. pp. 308-319, Springer, 2008.

[23] A. Hofmann, D. Fisch, and B. Sick, “Identifying Attack Instances
by Alert Clustering,” Proc. IEEE Three-Rivers Workshop Soft
Computing in Industrial Applications (SMCia ’07), pp. 25-31, 2007.

[24] M. Roesch, “Snort—Lightweight Intrusion Detection for Net-
works,” Proc. 13th USENIX Conf. System Administration (LISA ’99),
pp. 229-238, 1999.

[25] O. Buchtala, W. Grass, A. Hofmann, and B. Sick, “A Distributed
Intrusion Detection Architecture with Organic Behavior,” Proc.
First CRIS Int’l Workshop Critical Information Infrastructures
(CIIW ’05), pp. 47-56, 2005.

[26] D. Fisch, A. Hofmann, V. Hornik, I. Dedinski, and B. Sick, “A
Framework for Large-Scale Simulation of Collaborative
Intrusion Detection,” Proc. IEEE Conf. Soft Computing in
Industrial Applica- tions (SMCia ’08), pp. 125-130, 2008.

[27] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, second ed.
Wiley Interscience, 2001.

[28] IANA, “Port Numbers,” http://www.iana.org/assignments/
port-numbers, May 2009.

[29] Y. Rekhter, B. Moskowitz, D. Karrenberg, and G. de Groot, “RFC
1597—Address Allocation for Private Internets,” http://www.
faqs.org/rfcs/rfc1597.html, Mar. 1994.

[30] J. Postel, “RFC 790—Assigned numbers,” http://www.faqs.org/
rfcs/rfc790.html, Sept. 1981.

[31] O. Buchtala, A. Hofmann, and B. Sick, “Fast and Efficient
Training of RBF Networks,” Artificial Neural Networks and Neural
Information Processing—ICANN/ICONIP 2003, O. Kaynak, E.
Alpaydin, E. Oja, and L. Xu, eds., pp. 43-51, Springer, 2003.

[32] R.P. Lippmann, D.J. Fried, I. Graf, J.W. Haines, K.R. Kendall, D.
McClung, D. Weber, S.E. Webster, D. Wyschogrod, R.K.
Cunningham, and M.A. Zissman, “Evaluating Intrusion Detec-
tion Systems: The 1998 DARPA Offline Intrusion Detection
Evaluation,” Proc. DARPA Information Survivability Conf. and
Exposition (DISCEX), vol. 2, pp. 12-26, 2000.

[33] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On Clustering
Validation Techniques,” J. Intelligent Information Systems, vol. 17,
nos. 2/3, pp. 107-145, 2001.

[34] J.C. Dunn, “Well Separated Clusters and Optimal Fuzzy Parti-
tions,” J. Cybernetics, vol. 4, pp. 95-104, 1974.

[35] D.L. Davies and D.W. Bouldin, “A Cluster Separation
Measure,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 1, no. 2, pp. 224-227, Apr. 1979.

[36] M. Halkidi and M. Vazirgiannis, “Clustering Validity
Assessment Using Multi Representatives,” Proc. SETN Conf.,
vol. 2, pp. 237-249, 2002.

[37] A. Hofmann, I. Dedinski, B. Sick, and H. de Meer, “A Novelty-
Driven Approach to Intrusion Alert Correlation Based on
Distributed Hash Tables,” Proc. 12th IEEE Symp. Computers and
Comm. (ISCC ’07), pp. 71-78, 2007.

J Swathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4723 - 4730

4729

http://www.iana.org/assignments/�
http://www/�
http://www.faqs.org/�

[38] F. Provost and T. Fawcett, “Analysis and Visualization of
Classifier Performance: Comparison under Imprecise Class
and Cost Distributions,” Proc. Third Int’l Conf. Knowledge
Discovery and Data Mining (KDD ’97), pp. 43-48, 1997.

[39] J. McHugh, “Testing Intrusion Detection Systems: A Critique
of the 1998 and 1999 DARPA Intrusion Detection System
Evaluations as Performed by Lincoln Laboratory,” ACM Trans.
Information and System Security, vol. 3, no. 4, pp. 262-294, 2000.

[40] M.V. Mahoney and P.K. Chan, “An Analysis of the 1999
DARPA/ Lincoln Laboratory Evaluation Data for Network
Anomaly Detection,” Recent Advances in Intrusion Detection, G.
Vigna, E. Jonsson, and C. Krü gel, eds., pp. 220-237, Springer,
2003.

[41] A. Hofmann, D. Fisch, and B. Sick, “Improving Intrusion
Detection Training Data by Network Traffic Variation,” Proc.
IEEE Three-Rivers Workshop Soft Computing in Industrial Applica-
tions, pp. 25-31, 2007.

[42] Sourcefire, Inc., http://www.snort.org/,2009.
[43] CISCO Systems, Inc., “Cisco PIX Firewall System Log Messages,

Version6.3,” http://www.cisco.com/en/US/docs/security/pi
x/pix63/system/message/pixemsgs.html, 2009.

[44] Organic Computing, R.P. Wü rtz, ed. Springer, 2008.

J Swathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4723 - 4730

4730

http://www.snort.org/�
http://www.cisco.com/en/US/docs/security/pix/�
http://www.cisco.com/en/US/docs/security/pix/�

	A. Collaborating Intrusion Detection Agents
	B. Alert Generation and Format
	C. Data Stream Alert Aggregation
	A. Meta-Alert Generation and Format
	A. Campus Network Data

