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Abstract— Alert aggregation is an important subtask of 

intrusion detection. The goal is to identify and to cluster 
different alerts—produced by low-level intrusion detection 
systems, firewalls, etc.—belonging to a specific attack instance 
which has been initiated by an attacker at a certain point in 
time. Thus, meta-alerts can be generated for the clusters that 
contain all the relevant information whereas the amount of 
data (i.e., alerts) can be reduced substantially. Meta-alerts may 
then be the basis for reporting to security experts or for 
communication within a distributed intrusion detection 
system. We propose a novel technique for online alert 
aggregation which is based on a dynamic, probabilistic model 
of the current attack situation. Basically, it can be regarded as 
a data stream version of a maximum likelihood approach for 
the estimation of the model parameters. With three 
benchmark data sets, we demonstrate that it is possible to 
achieve reduction rates of up to 99.96 percent while the 
number of missing meta-alerts is extremely low. In addition, 
meta-alerts are generated with a delay of typically only a few 
seconds after observing the first alert belonging to a new attack 
instance. 

Keywords— Intrusion detection, alert aggregation, 
generative modelling, data stream algorithm. 

I. INTRODUCTION 
Intrusion detection systems (IDS) are besides other 

protective measures such as virtual private networks, 
authentication mechanisms, or encryption techniques 
very important to guarantee information security. 
They help to defend against the various threats to 
which networks and hosts are exposed to by detecting 
the actions of attackers or attack tools in a network or 
host-based manner with misuse or anomaly detection 
techniques. 
At present, most IDS are quite reliable in detecting 
suspicious actions by evaluating TCP/IP connections 
or log files, for instance. Once an IDS finds a 
suspicious action, it immediately creates an alert which 
contains information about the source, target, and 
estimated type of the attack (e.g., SQL injection, buffer 
overflow, or denial of service). As the intrusive actions 
caused by a single attack instance— which is the 
occurrence of an attack of a particular type that has 
been launched by a specific attacker at a certain point in 
time are often spread over many network connections 
or log file entries, a single attack instance often results in 
hundreds or even thousands of alerts. IDS usually 
focus on detecting attack types, but not on 
distinguishing between different attack instances. In 

addition, even low rates of false alerts could easily result 
in a high total number of false alerts if thousands of 
network packets or log file entries are inspected. As a 
consequence, the IDS creates many alerts at a low level 
of abstraction. It is extremely difficult for a human 
security expert to inspect this flood of alerts, and 
decisions that follow from single alerts might be wrong 
with a relatively high probability. 

In our opinion, a “perfect” IDS should be situation-
aware in the sense that at any point in time it should 
“know” what is going on in its environment regarding 
attack instances (of various types) and attackers. In this 
paper, we make an important step toward this goal by 
introducing and evaluating a new technique for alert 
aggregation. Alerts may originate from low-level IDS 
such as those mentioned above, from firewalls (FW), 
etc. Alerts that belong to one attack instance must be 
clustered together and meta-alerts must be generated 
for these clusters. The main goal is to reduce the amount 
of alerts substantially without losing any important 
information which is necessary to identify on- going 
attack instances. We want to have no missing meta- 
alerts, but in turn we accept false or redundant meta-
alerts to a certain degree. 

This problem is not new, but current solutions are 
typically based on a quite simple sorting of alerts, e.g., 
according to their source, destination, and attack type. 
Under real conditions such as the presence of 
classification errors of the low-level IDS (e.g., false 
alerts), uncertainty with respect to the source of the attack 
due to spoofed IP addresses, or wrongly adjusted time 
windows, for instance, such an approach fails quite 
often. 
Our approach has the following distinct properties: 

. It is a generative modeling approach using prob- 
abilistic methods. Assuming that attack 
instances can be regarded as random 
processes “producing” alerts, we aim at 
modeling these processes using 
approximative maximum likelihood 
parameter estimation techniques. Thus, the 
beginning as well as the completion of attack 
instances can be detected. 

. It is a data stream approach, i.e., each observed 
alert is processed only a few times. Thus, it can 
be applied online and under harsh timing 
constraints. 
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The remainder of this paper is organized as follows: 
In Section 2 some related work is presented. Section 3 
describes the proposed alert aggregation approach, 
and Section 4 provides experimental results for the alert 
aggregation using various data sets. Finally, Section 5 
summarizes the major findings. 

II. RELATED WORK 
Most existing IDS are optimized to detect attacks with 

high accuracy. However, they still have various 
disadvantages that have been outlined in a number of 
publications and a lot of work has been done to analyze 
IDS in order to direct future research. Besides others, 
one drawback is the large amount of alerts produced. 
Recent research focuses on the correlation of alerts 
from (possibly multiple) IDS. If not stated otherwise, 
all approaches outlined in the following present 
either online algorithms or as we see it can easily be 
extended to an online version. 

Probably, the most comprehensive approach to alert 
correlation is introduced. One step in the presented 
correlation approach is attack thread reconstruction, which 
can be seen as a kind of attack instance recognition. No 
clustering algorithm is used, but a strict sorting of 
alerts within a temporal window of fixed length 
according to the source, destination, and attack 
classification (attack type). A  similar approach is used 
to eliminate duplicates, i.e., alerts that share the same 
quadruple of source and destination address as well 
as source and destination port. In addition, alerts are 
aggregated (online) into predefined clusters (so-called 
situations) in order to provide a more condensed view 
of the current attack situation. The definition of such 
situations is also used to cluster alerts. Alert clustering is 
used to group alerts that belong to the same attack 
occurrence. Even though called clustering, there is no 
clustering algorithm in a classic sense. The alerts from 
one (or possibly several) IDS are stored in a relational 
database and a similarity relation which is based on 
expert rules is used to group similar alerts together. Two 
alerts are defined to be similar, for instance, if both 
occur within a fixed time window and their source and 
target match exactly. As already mentioned, these 
approaches are likely to fail under real-life conditions 
with imperfect classifiers (i.e., low-level IDS) with false 
alerts or wrongly adjusted time windows. 

A weighted, attribute-wise similarity operator is 
used to decide whether to fuse two alerts or not. 
However, as already stated, this approach suffers from 
the high number of parameters that need to be set. The 
similarity operator presented has the same 
disadvantage there are lots of parameters that must be 
set by the user and there is no or only little guidance in 
order to find good values. Another clustering algorithm 
that is based on attribute-wise similarity measures with 
user- defined parameters is presented. However, a 
closer look at the parameter setting reveals that the 
similarity measure, in fact, degenerates to a strict 
sorting according to the source and destination IP 
addresses and ports of the alerts. The drawbacks that 
arise thereof are the same as those mentioned above. 

Three different approaches are presented to fuse 
alerts. The first, quite simple one groups alerts according 
to their source IP address only. The other two 
approaches are based on different supervised learning 
techniques. Besides a basic least-squares error 
approach, multilayer perceptions, radial basis function 
networks, and decision trees are used to decide whether 
to fuse a new alert with an already existing meta-alert 
(called scenario) or not. Due to the supervised nature, 
labeled training data need to be generated which could 
be quite difficult in case of various attack instances. 

The same or quite similar techniques as described so 
far are also applied in many other approaches to alert 
correlation, especially in the field of intrusion scenario 
detection. Prominent research in scenario detection is 
described, for example. More details can be found. 

An offline clustering solution based on the CURE 
algorithm is presented. The solution is restricted to 
numerical attributes. In addition, the number of 
clusters must be set manually. This is problematic, as 
in fact it assumes that the security expert has 
knowledge about the actual number of ongoing attack 
instances. The alert clustering solution described is more 
related to ours. A link-based clustering approach is 
used to repeatedly fuse alerts into more generalized 
ones. The intention is to discover the reasons for the 
existence of the majority of alerts, the so- called root 
causes, and to eliminate them subsequently. An attack 
instance in our sense can also be seen as a kind of root 
cause, but root causes are regarded as “generally 
persistent” which does not hold for attack instances that 
occur only within a limited time window. Furthermore, 
only root causes that are responsible for a majority of 
alerts are of interest and the attribute-oriented 
induction algorithm is forced “to find large clusters” as 
the alert load can thus be reduced at most. Attack 
instances that result in a small number of alerts (such as 
PHF or FFB) are likely to be ignored completely. The 
main difference to our approach is that the algorithm 
can only be used in an offline setting and is intended to 
analyze historical alert logs. In contrast, we use an 
online approach to model the current attack situation. 
The alert clustering approach described but aims at 
reducing the false positive rate. The created cluster 
structure is used as a filter to reduce the amount of 
created alerts. Those alerts that are similar to already 
known false positives are kept back, whereas alerts that 
are considered to be legitimate (i.e., dissimilar to all 
known false positives) are reported and not further 
aggregated. The same idea but based on a different 
offline clustering algorithm is presented. 

A completely different clustering approach is 
presented. There, the reconstruction error of an auto 
associator neural network (AA-NN) is used to 
distinguish different types of alerts. Alerts that yield the 
same (or a similar) reconstruction error are put into the 
same cluster. The approach can be applied online, but an 
offline training phase and training data are needed to train 
the AA-NN and also to manually adjust intervals for the 
reconstruction error that determine which alerts are 
clustered together. In addition, it turned out that due to the 
dimensionality reduction by the AA-NN, alerts of 

J Swathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4723 - 4730

4724



different types can have the same reconstruction error 
which leads to erroneous clustering. 

 
Fig. 1. Architecture of an intrusion detection agent. 

In our prior work, we applied the well-known c-means 
clustering algorithm in order to identify attack instances. 
However, this algorithm also works in a purely offline 
manner. 

III. A NOVEL ONLINE ALERT AGGREGATION TECHNIQUE 
In this section, we describe our new alert aggregation 

approach which is at each point in time based on a 
probabilistic model of the current situation. To outline 
the preconditions and objectives of alert aggregation, 
we start with a short sketch of our intrusion framework. 
Then, we briefly describe the generation of alerts and 
the alert format. We continue with a new clustering 
algorithm for offline alert aggregation which is basically 
a parameter estimation technique for the probabilistic 
model. After that, we extend this offline method to an 
algorithm for data stream clustering which can be 
applied to online alert aggregation. Finally, we make 
some remarks on the generation of meta-alerts. 

 
A. Collaborating Intrusion Detection Agents 

In our work, we focus on a system of structurally very 
similar so-called intrusion detection (ID) agents. 
Through self-organized collaboration, these ID agents 
form a distributed intrusion detection system (DIDS). 

Fig. 1 outlines the layered architecture of an ID 
agent:The sensor layer provides the interface to the 
network and the host on which the agent resides. Sensors 
acquire raw data from both the network and the host, 
filter incoming data, and extract interesting and 
potentially valuable (e.g., statistical) information 
which is needed to construct an appropriate event. At 
the detection layer, different detectors, e.g., classifiers 
trained with machine learning techniques such as 
support vector machines (SVM) or conventional rule-
based systems such as Snort [24], assess these events 
and search for known attack signatures (misuse 
detection) and suspicious behavior (anomaly 
detection). In case of attack suspicion, they create alerts 
which are then forwarded to the alert processing layer. 
Alerts may also be produced by FW or the like. At the 

alert processing layer, the alert aggregation module has 
to combine alerts that are assumed to belong to a 
specific attack instance. Thus, so- called meta-alerts are 
generated. Meta-alerts are used or enhanced in 
various ways, e.g., scenario detection or decentralized 
alert correlation. An important task of the reaction layer 
is reporting. 

The overall architecture of the distributed intrusion 
detection system and a framework for large-scale 
simulations are described in more detail. In our layered 
ID agent architecture, each layer assesses, filters, 
and/or aggregates information produced by a lower 
layer. Thus, relevant information gets more and more 
condensed and certain, and, therefore, also more 
valuable. We aim at realizing each layer in a way such 
that the recall of the applied techniques is very high, 
possibly at the cost of a slightly poorer precision. In 
other words, with the alert aggregation module on 
which we focus in this paper we want to have a 
minimal number of missing meta-alerts (false 
negatives) and we accept some false meta- alerts (false 
positives) and redundant meta-alerts in turn. 

 
B. Alert Generation and Format 

In this section, we make some comments on the 
information contained in alerts, the objects that must 
be aggregated, and on their format. As the concrete 
content and format depend on a specific task and on 
certain realizations of the sensors and detectors, some 
more details will be given in Section 4 together with the 
experimental conditions. 

At the sensor layer, sensors determine the values of 
attributes that are used as input for the detectors as 
well as for the alert clustering module. Attributes in an 
event that are independent of a particular attack instance 
can be used for classification at the detection layer. 
Attributes that are (or might be) dependent on the attack 
instance can be used in an alert aggregation process to 
distinguish different attack instances. A perfect 
partition into dependent and independent attributes, 
however, cannot be made. Some are clearly dependent 
(such as the source IP address which can identify the 
attacker), some are clearly independent such as the 
destination port which usually is 80 in case of web- 
based attacks), and lots are both (such as the destination 
port which can be a hint to the attacker’s actual target 
service as well as an attack tool specifically designed to 
target a particular service only). In addition to the 
attributes produced by the sensors, alert aggregation 
is based on additional attributes generated by the 
detectors. Examples are the estimated type of the 
attack instance that led to the generation of the alert 
(e.g., SQL injection, buffer overflow, or denial of 
service), and the degree of uncertainty associated with 
that estimate. 

 
C. Data Stream Alert Aggregation 

In this section, we describe how the offline approach is 
extended to an online approach working for dynamic 
attack situations. 

Clearly, there is a trade-off between runtime (or 
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reaction time) and accuracy. For example, it is hardly 
possible to decide upon the existence of a new attack 
instance when only one observation is made. From the 
viewpoint of our objectives, the tasks 1 and 2 are more 
time critical than task 3. 

From a probabilistic viewpoint we can state that our 
overall random process is non stationary in a certain 
sense which can be regarded as being equivalent to 
changing the mixing coefficients at certain points in 
time. A mixing coefficient is either zero or the reciprocal 
of the number of “active” components (for the time 
interval of the respective attack instance). With 
appropriate novelty and obsoleteness detection 
mechanisms, we aim at detecting these points in time 
with both sufficient certainty and timeliness. 

 

Algorithm 2 describes the online alert aggregation. If 
a new alert is observed we first have to decide whether 
a first component has to be created. In this case, we 
initialize its parameters with information taken from 
this alert. Random, small values are added, for 
example, to prevent any subsequent optimization 
steps from running into singularities of the respective 
likelihood function. Otherwise, we have to decide 
whether the alert has to be associated with an existing 
component or not, i.e., whether we believe that it 
belongs to an ongoing attack instance or not. 
Provisionally, we assign the alert to the most likely 
component (E step) and optimize the parameters of 
this component (M step). For the reason of temporal 
efficiency, we do not conduct a sequence of E and M 
steps for the overall model. In some tests, it turned out 
that our main goal not to miss any attack instances, can 
be achieved this way with substantially lower runtimes 
but at the cost of some redundant meta-alerts (due to 
split of clusters). The assignment of the alert to an 
existing component is not accepted in any case, only if 
the quality of the model increases or does not decrease 
too much, e.g., not more than 15 percent (realized by 
means of threshold &). 

Algorithm 3 describes the novelty handling itself. 
Basically, to adapt the overall model, we run the offline 
aggregation algorithm several times with different 
possible component numbers to chose the optimal 
number. How- ever, due to the homogeneity of the 
buffer, we may restrict the optimization to the alerts in 
the buffer and in one “neighbor” cluster on the one hand 
and a relatively small user-defined maximum number 
of components K on the other without violating our 
main goal. The result of this local optimization is finally 
fused with the unmodified parts of the model. 

 

In order to reduce the runtime of this algorithm further, 
we may reduce the number of alerts that have to be 
processed by means of an appropriate sub sampling 
technique. 
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A. Meta-Alert Generation and Format 
With the creation of a new component, an 

appropriate meta- alert that represents the information 
about the component in an abstract way is created. 
Every time a new alert is added to a component, the 
corresponding meta-alert is updated incrementally, 
too. That is, the meta-alert “evolves” with the 
component. Meta-alerts may be the basis for a whole set 
further tasks: 

 
. Sequences of meta-alerts may be investigated 

further in order to detect more complex attack 
scenarios (e.g., by means of hidden Markov 
models). 

. Meta-alerts may be exchanged with other ID 
agents in order to detect distributed attacks such 
as one-to- many attacks. 

. Based on the information stored in the meta-
alerts, reports may be generated to inform a 
human security expert about the ongoing attack 
situation. 

 
Meta-alerts could be used at various points in time 

from the initial creation until the deletion of the 
corresponding component (or even later). For instance, 
reports could be created immediately after the creation 
of the component or—which could be more preferable 
in some cases—a sequence of updated reports could 
be created in regular time intervals. Another example 
is the exchange of meta- alerts between ID agents: Due 
to high communication costs, meta-alerts could be 
exchanged based on the evaluation of their 
interestingness. 

According to the task for which meta-alerts are used, 
they may contain different attributes. Examples for 
those attributes are aggregated alert attributes (e.g., lists 
or intervals of source addresses or targeted service 
ports, or a time interval that marks the beginning and the 
end if available of the attack instance), attributes 
extracted from the probabilistic model (e.g., the 
distribution parameters or the number of alerts 
assigned to the component), an aggregated alert 
assessment provided by the detection layer (e.g., the 
attack type classification or the classification 
confidence), and also information about the current 
attack situation (e.g., the number of recent attacks of the 
same or a similar type, links to attacks originating from 
the same or a similar source). 

 

IV. EXPERIMENTAL RESULTS 
This section evaluates the new alert aggregation 

approach. We use three different data sets to 
demonstrate the feasibility of the proposed method: 
The first is the  well- known DARPA intrusion 
detection evaluation data set, for the second we used real-
life network traffic data collected at our university 
campus network, and the third contains firewall log 
messages from a commercial  
Internet service provider. All experiments were 
conducted on an PC with 2.20 GHz and 2 GB of RAM. 

 
Fig. 2. ROC curve for the SVM detector. 

 
A. Campus Network Data 

To assess the performance of our approach in more 
detail, we also conducted own attack experiments. We 
launched several brute force password guessing attacks 
against the mail server (POP3) of our campus network 
and recorded the network traffic. The attack instances 
differed in origin, start time, duration, and password 
guessing rate. The attack schedule was designed to 
reflect situations which we regard as being difficult to 
recognize. In particular, we have 

 
1. several concurrent attack instances (up to 

seven), 
2. partially and completely overlapping attack 

in- stances, 
3. several instances within a short time interval, 
4. different attack instances from similar sources, 
5. different attack durations, and 
6. an attacker that changes his IP address 

during the attack. 
 

In order to demonstrate that the proposed technique 
can also be used with a conventional signature-based 
detector, the captured traffic was analyzed by the open 
source IDS Snort, which detected all 17 attack instances 
that have been launched and produced 128,816 alerts. 
The alert format equals the one used for the SVM 
detector, i.e., the alerts exhibit the source and destination 
IP address, the source and destination port, the attack 
type, and creation time differences. Snort was 
configured to match our network topology and we 
turned off rudimental alert aggregation features. In 
order to achieve a high recall, we activated all available 
rule sets the official rule sets as well as available 
community rules, which both are available at the Snort 
web page. Activating all rules leads to a false alert rate 
of 0.33 percent. The FPR is based on the assumption 
that all alerts that are not classified with the attack type 
that we launched are false alerts. There is no missing 
alert rate given in Table 1 for this data set for two 
reasons: First, it cannot be guaranteed that there are 
unknown attacks in the data set that were started by 
real attackers and second, we do not know exactly how 
many alerts should be created by the attacks we 
launched. 
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B. Performance Measures 
In order to assess the performance of the alert 

aggregation, we evaluate the following measures: 
Percentage of detected instances (p). We regard an 

attack instance as being detected if there is at least one 
meta- alert that predominantly contains alerts of that 
particular instance. The percentage of detected attack 
instances p can thus be determined by dividing the 
number of instances that are detected by the total 
number of instances in the data set. The measure is 
computed with respect to the instances covered by the 
output of the detection layer, i.e., instances missed by 
the detectors are not considered. 

Number of meta-alerts (MA) and reduction rate 
(r). The number of meta-alerts (MA) is further 
divided into the number of attack meta-alerts 
MAattack which predominantly contain true alerts and 
the number of nonattack meta-alerts MAnonattack 
which predominantly contain false alerts. The 
reduction rate r is 1 minus the number of created 
meta alerts MA divided by the total number of alerts 
N. 

Average runtime (tavg) and worst case runtime 
(tworst). The average runtime is measured in 
milliseconds per alert. Assuming up to several hundred 
thousand alerts a day, tavg should stay clearly below 
100 ms per alert. The worst case runtime tworse, which 
is measured in seconds, states how long it takes at most 
to execute the while loop of Algorithm 2, which may 
include the execution of Algorithms 3 and 1. Meta-alert 
creation delay (d). It is obvious that there is a certain 
delay until a meta-alert is created for a new attack 
instance. The meta-alert creation delay d measures the 
delay between the actual beginning of the instance (i.e., 
the creation time of the first alert) and the creation of 
the first meta-alert for that instance. We investigate, 
how many seconds the algorithm needs to create 90 
percent (d90%), 95 percent (d95%), and 100 percent 
(d100%) of the meta-alerts. 
C. Results  

In the following, the results for the alert aggregation 
are presented. For all experiments, the same parameter 
settings are used. We set the threshold & that decides 
whether to add a new alert to an existing component or 
not to five percent, and the value for the threshold μ 
that specifies the allowed temporal spread of the alert 
buffer to 180 seconds. & was set that low value in order 
to ensure that even a quite small degrade of the cluster 
quality, which could indicate a new attack instance, 
results in a new component. A small value of &, of 
course, results in more components and, thus, in a lower 
reduction rate, but it also reduces the risk of missing 
attack instances. The parameter μ, which is used in the 
novelty assessment function, controls the maximum 
time that new alerts are allowed to reside in the buffer 
B. In order to keep the response time short, we set it to 
180 s which we think is a reasonable value. For both 
parameters, there were large intervals in which 
parameter values could be chosen without 
deteriorating the results. A detailed analysis and 

discussion on the effects of different parameter 
settings can be found. 

 

 
Fig. 3. Cumulative creation delays for meta-alerts. 

 
With more meta-alerts, the runtime increases. Even in 

OP 4, with an average runtime of 0.97 ms per alert, the 
proposed technique is still very efficient. Fig. 3  shows 
the component creation delays for the four operating 
points. The figure depicts the percentage of attack 
instances for which a meta-alert was created after a 
time not exceeding the value specified at the x-axis. It 
can be seen that the creation delay is within the range of 
a few seconds and, thus, meets the requirements for an 
online application. Table 2 displays the time after which 
for 90, 95, and 100 percent of the attack instances meta-
alerts were created. Note that these values correspond to 
points on the curve in Fig. 5. Interestingly, in the 
idealized case, the delay is much higher which can be 
explained by the novelty detection mechanism (cf. 
(14)). In the case of a more homogeneous alert stream, 
the novelty handling is mainly influenced by the 
temporal spread whereas in the case of a 
heterogeneous alert stream due to false alerts, the 
novelty handling is started more often which results in 
lower component creation delay times. 
D. Conclusion 

The experiments demonstrated the broad applicability 
of the proposed online alert aggregation approach. We 
analyzed three different data sets and showed that 
machine-learning-based detectors, conventional 
signature- based detectors, and even firewalls can be used 
as alert generators. In all cases, the amount of data could be 
reduced substantially. Although there are situations 
especially clusters that are wrongly split the instance 
detection rate is very high: None or only very few attack 
instances were missed. Runtime and component creation 
delay are well suited for an online application. 

V. SUMMARY AND OUTLOOK 
We presented a novel technique for online alert 

aggregation and generation of meta-alerts. We have 
shown that the sheer amount of data that must be 
reported to a human security expert or communicated 
within a distributed intrusion detection system, for 
instance, can be reduced significantly. The reduction 
rate with respect to the number of alerts was up to 99.96 
percent in our experiments. At the same time, the 
number of missing attack instances is extremely low or 
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even zero in some of our experiments and the delay for the 
detection of attack instances is within the range of some 
seconds only. 

In the future, we will develop techniques for 
interestingness based communication strategies for a 
distributed IDS. This IDS will be based on organic 
computing principles [44]. In addition, we will 
investigate how human domain knowledge can be 
used to improve the detection processes further. We 
will also apply our techniques to benchmark data that 
fuse information from heterogeneous sources (e.g., 
combining host and network-based detection). 
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